- 中文名
- 专家系统
- 外文名
- Expert system
- 实 质
- 智能计算机程序系统
- 特 点
- 模拟人类专家解决领域问题
专家系统是人工智能中最重要的也是最活跃的一个应用领域,它实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统是早期人工智能的一个重要分支,它可以看作是一类具有专门知识和经验的计算机智能程序系统,一般采用人工智能中的知识表示和知识推理技术来模拟通常由领域专家才能解决的复杂问题。
20世纪60年代初,出现了运用逻辑学和模拟心理活动的一些通用问题求解程序,它们可以证明定理和进行逻辑推理。但是这些通用方法无法解决大的实际问题,很难把实际问题改造成适合于计算机解决的形式,并且对于解题所需的巨大的搜索空间也难于处理。1965年,E.A.费根鲍姆等人在总结通用问题求解系统的成功与失败经验的基础上,结合化学领域的专门知识,研制了世界上第一个专家系统dendral ,可以推断化学分子结构。20多年来,知识工程的研究,专家系统的理论和技术不断发展,应用渗透到几乎各个领域,包括化学、数学、物理、生物、医学、农业、气象、地质勘探、军事、工程技术、法律、商业、空间技术、自动控制、计算机设计和制造等众多领域,开发了几千个的专家系统,其中不少在功能上已达到,甚至超过同领域中人类专家的水平,并在实际应用中产生了巨大的经济效益。
专家系统的发展已经历了3个阶段,正向第四代过渡和发展。第一代专家系统(dendral、macsyma等)以高度专业化、求解专门问题的能力强为特点。但在体系结构的完整性、可移植性、系统的透明性和灵活性等方面存在缺陷,求解问题的能力弱。第二代专家系统(mycin、casnet、prospector、hearsay等)属单学科专业型、应用型系统,其体系结构较完整,移植性方面也有所改善,而且在系统的人机接口、解释机制、知识获取技术、不确定推理技术、增强专家系统的知识表示和推理方法的启发性、通用性等方面都有所改进。第三代专家系统属多学科综合型系统,采用多种人工智能语言,综合采用各种知识表示方法和多种推理机制及控制策略,并开始运用各种知识工程语言、骨架系统及专家系统开发工具和环境来研制大型综合专家系统。在总结前三代专家系统的设计方法和实现技术的基础上,已开始采用大型多专家协作系统、多种知识表示、综合知识库、自组织解题机制、多学科协同解题与并行推理、专家系统工具与环境、人工神经网络知识获取及学习机制等最新人工智能技术来实现具有多知识库、多主体的第四代专家系统。
为了使计算机能运用专家的领域知识,必须要采用一定的方式表示知识。目前常用的知识表示方式有产生式规则、语义网络、框架、状态空间、逻辑模式、脚本、过程、面向对象等。基于规则的产生式系统是目前实现知识运用最基本的方法。产生式系统由综合数据库、知识库和推理机3个主要部分组成,综合数据库包含求解问题的世界范围内的事实和断言。知识库包含所有用“如果:〈前提〉,于是:〈结果〉”形式表达的知识规则。推理机(又称规则解释器)的任务是运用控制策略找到可以应用的规则。
知识库用来存放专家提供的知识。专家系统的问题求解过程是通过知识库中的知识来模拟专家的思维方式的,因此,知识库是专家系统质量是否优越的关键所在,即知识库中知识的质量和数量决定着专家系统的质量水平。一般来说,专家系统中的知识库与专家系统程序是相互独立的,用户可以通过改变、完善知识库中的知识内容来提高专家系统的性能。
人工智能中的知识表示形式有产生式、框架、语义网络等,而在专家系统中运用得较为普遍的知识是产生式规则。产生式规则以IF…THEN…的形式出现,就像BASIC等编程语言里的条件语句一样,IF后面跟的是条件(前件),THEN后面的是结论(后件),条件与结论均可以通过逻辑运算AND、OR、NOT进行复合。在这里,产生式规则的理解非常简单:如果前提条件得到满足,就产生相应的动作或结论。
正向链的策略是寻找出前提可以同数据库中的事实或断言相匹配的那些规则,并运用冲突的消除策略,从这些都可满足的规则中挑选出一个执行,从而改变原来数据库的内容。这样反复地进行寻找,直到数据库的事实与目标一致即找到解答,或者到没有规则可以与之匹配时才停止。
逆向链的策略是从选定的目标出发,寻找执行后果可以达到目标的规则;如果这条规则的前提与数据库中的事实相匹配,问题就得到解决;否则把这条规则的前提作为新的子目标,并对新的子目标寻找可以运用的规则,执行逆向序列的前提,直到最后运用的规则的前提可以与数据库中的事实相匹配,或者直到没有规则再可以应用时,系统便以对话形式请求用户回答并输入必需的事实。
由此可见,推理机就如同专家解决问题的思维方式,知识库就是通过推理机来实现其价值的。
人机界面是系统与用户进行交流时的界面。通过该界面,用户输入基本信息、回答系统提出的相关问题,并输出推理结果及相关的解释等。
早期的专家系统采用通用的程序设计语言(如fortran、pascal、basic等)和人工智能语言(如lisp、prolog、smalltalk等),通过人工智能专家与领域专家的合作,直接编程来实现的。其研制周期长,难度大,但灵活实用,至今尚为人工智能专家所使用。大部分专家系统研制工作已采用专家系统开发环境或专家系统开发工具来实现,领域专家可以选用合适的工具开发自己的专家系统,大大缩短了专家系统的研制周期,从而为专家系统在各领域的广泛应用提供条件。
根据定义,专家系统应具备以下几个功能:
⑷能够对推理过程、结论或系统自身行为作出必要的解释,如解题步骤、处理策略、选择处理方法的理由、系统求解某种问题的能力、系统如何组织和管理其自身知识等。这样既便于用户的理解和接受,同时也便于系统的维护。
⑶灵活性。专家系统的知识与推理机构的分离,使系统不断接纳新的知识,从而确保系统内知识不断增长以满足商业和研究的需要。
⑵按任务类型可分为:
解释型:可用于分析符号数据,进行阐述这些数据的实际意义。
预测型:根据对象的过去和现在情况来推断对象的未来演变结果。
诊断型:根据输入信息来找到对象的故障和缺陷。
调试型:给出自己确定的故障的排除方案。
维修型:指定并实施纠正某类故障的规划。
规划型:根据给定目标拟定行动计划。
设计型:根据给定要求形成所需方案和图样。
监护型:完成实时监测任务。
控制型:完成实施控制任务。
教育型:诊断型和调试型的组合,用于教学和培训。
最初的专家系统乃人工智能之一个应用,但由于其重要性及相关应用系统之迅速发展,它已是信息系统的一种特定类型。专家系统一词系由“以知识为基础的专家系统(knowledge-based expert system)”而来,此种系统应用计算机中储存的人类知识,解决一般需要用到专家才能处理的问题,它能模仿人类专家解决特定问题时的推理过程,因而可供非专家们用来增进问题解决的能力,同时专家们也可把它视为具备专业知识的助理。由于在人类社会中,专家资源实相当稀少,有了专家系统,则可使此珍贵的专家知识获得普遍的应用。
解释(Interpretation)-如测试肺部测试(如PUFF)。
故障排除(Fault Isolation)-如电话故障排除系统ACE。
监督(Monitoring)-如监督IBM MVS操作系统之YES/MVS。
除错(Debugging)-如侦查学生减法算术错误原因之BUGGY。
修理(Repair)-如修理原油储油槽之专家系统SECOFOR。
行程安排(Scheduling)-如制造与运输行程安排之专家系统ISA。又如 工作站(work shop)制造步骤安排系统。
教学(Instruction)-如教导使用者学习操作系统之TVC专家系统。
控制(Control)-帮助Digital Corporation计算机制造及分配之控制系统PTRANS。
校准(Targeting)-例如校准武器如何工作
这里,我们以一个简单的“动物识别专家系统”为例,初步认识专家系统的工作机制及系统特点。该系统的知识库是一个产生式规则的集合,图2显示了其中的2条规则。从原则上来讲,规则之间相互独立,任何两条规则的“前件”一般都不能重复,也不具有包含关系。小型专家系统的规则可以是几条几十条,大型专家系统的规则可达上千条,像这个动物专家系统知识库的规则就只有六条。
专家系统的发展下一步的将以模型推理为主,以规则推理为辅,并切合商业应用需求,满足对实时以及大数据量处理的需求。
