- 中文名
- 弛豫
- 外文名
- Relaxation
- 医 学
- 磁共振加权(WI)成像
- 工 业
- 研究岩石孔隙中流体的弛豫
- 条 件
- 外加射频脉冲RF(B1)
处在稳定外磁场中的核自旋系统受到两个作用,一是磁场力图使原子核的磁矩沿着磁场方向就位,另一是分子的热运动力图阻碍核磁矩调整位置。最后磁矩与稳定磁场重叠并达到—个动平衡,此时沿磁场方向的磁化强度最大,而与磁场垂直方向的磁化强度平均为零。如果原子核系统再受到—个不同方向的电磁场作用,磁化强度就会偏离原来的平衡位置,产生与原磁场方向垂直的横向磁化强度,同时与原磁场平行的纵向磁化强度也将减小。当这个电磁场去掉之后,核系统的不平衡状态并不能维持下去,而要向平衡状态恢复。人们把向平衡状态恢复的过程称为弛豫过程。原子核从激化的状态回复到平衡排列状态的过程叫弛豫过程。这个过程遵循指数变化规律,其时间常数称为弛豫时间。 弛豫过程所需的时间叫弛豫时间。即达到热动平衡所需的时间。热动平衡 即因热量而导致的动态平衡。
磁共振加权(WI)成像,T1WI主要反映组织纵向弛豫的差别。我们还是以甲、乙两种组织为例,假设这两种组织质子密度相同,但甲组织的纵向弛豫比乙组织快(即甲组织的T1值短于乙组织)。进入主磁场后由于质子密度一样,甲乙两种组织产生的纵向磁化矢量大小相同(图14a),90°脉冲后产生的宏观横向磁化矢量的大小也相同,我们先不去理会这种横向磁化矢量,也不马上检测MR信号。射频脉冲关闭后,甲乙两种组织将发生纵向弛豫,由于甲组织的纵向弛豫比乙组织快,过一定时间以后,甲组织已经恢复的宏观纵向磁化矢量将大于乙组织(图14b)。由于接收线圈不能检测到这种纵向磁化矢量的差别,必须使用第二个90°脉冲。第二个90°脉冲后,甲、乙两组织的宏观纵向磁化矢量将发生偏转,产生宏观横向磁化矢量,因为这时甲组织的纵向磁化矢量大于乙组织,其产生的横向磁化矢量将大于乙组织(图14c),这时马上检测MR信号,甲组织产生的MR信号将高于乙组织(图14d),这样就实现了T1WI。在T1WI上,组织的T1值越小,其MR信号强度越大。
